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Abstract. Irreducible representations of Hecke algebras of the type A".,, H,(q), are 
discussed in the non-standard basis, Some subduction coefficients, i.e. the transformation 
coefficients between the standard and non-standard base of H,(q), are deFived by using 
the linear equation method. 

1. Introduction 

Recently. braid groups and their representations have drawn increasing attention 
from physicists and mathematicians [l-lo]. Braid group generators can be con- 
structed by using the spectral-independent d-matrices which are the solutions of the 
Yang-Baxter equation (YBE) without a spectral parameter. The YBE is an important 
relation in completely integrable systems, e.g. in conformal field theory and the two- 
dimensional models in statistical physics, which are exactly solvable. An essential tool 
in the search for such models is the construction of representations of braid groups. 
From these models some new link polynomials have been constructed, which can be 
used to distinguish topologically different knots and links [6] .  Classification of knots 
and links is a long-standing problem in mathematics. Thus, a new relationship 
between physics and mathematics can be established. 

The Hecke algebras H.(q) are special group realizations, of which the standard 
basis has been studied in detail by many mathematicians [l-41. Their standard 
generators satisfy the same relations as a set of simple reflections (ox adjacent 
permutations) of the symmetric group S. does, except that the simple property bf = 1 
is replaced by bj = b,(q - q-')  + 1. It is well known that H,(q) is isomorphic to the 
group algebra of S ,  if q is not a root of unity. 

The paper is organized as follows. In section 2 we will briefly review the irreducible 
representations of the Hecke algebras H.(q) in the standard basis which is adapted to 
the chain H,(q) 3Hn-!(q) 2 . . . 3 H,(q). Then the non-standard basis adapted to the 
chain H,,(q) xH,,,(q) x HJq) is expanded in terms of the standard ones. The expan- 
sion coefficients are called the subduction coefficients (SDCS), or the transformation 
coefficients between the standard and non-standard bases of H.(q);In section 3, we 
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will outline a linear equation method for evaluating these SDCS. This method is useful 
in deriving some analytical expressions for the SDCS as well as for the outer product 
coefficients (ORCS) for the Hecke algebras. In section 4, the anaIytical expressions of 
SDCS for H,(q) with n S5 and a non-multiplicity-free example for n = 6 are tabulated. 

Feng Pan and Jin-Qunn Chen 

2. Hecke algebras and their representations 

2.1. Hecke algebras 

The main subject of this paper deals with the algebras which are homomorphic images 
of the braid groups. The braid group B, can be defined topologically [6] or algebrai- 
cally by the generators b, ,  b,, . . . , bnF1 and the relations 

bbi+ b i =  b, + ,bbi+ I (2.1) 

bibi = bibi for l i- j la2.  (2.2) 

forn= 1 ,2 , .  . . , n -  1 

Let H.(q) be the Hecke algebra of type A n - ,  over C(q), the field of rational 
functions over C. H.(q) is given by the generators g,, g,, . . . , gn-], which satisfy the 
same relation as that for a set of simple reflections of S,. It is well known explicity [2] 
that H,(q) is not simple only for q being a primitive kth root of unity with k =  
2,3, . . . , n or q = O .  Thus, whenever H,(q) is semisimple, all its irreducible represen- 
tations up to conjugacy are labelled by the Young diagrams with n boxes. 

2.2. Irreducible representations of HJq) in the standard basis 

Let be the standard Young tableau, and 1 Yk1)9 be the orthogonal basis vectors, 
i.e. the basis vectors IY;]), satisfy &Yk11~~! )9=6m- ,  where [A]=[A,A,,  . A , ]  with 
d 1 3 A 2 3 . .  .>An and A , + A 2 +  . ' .  +A.=n, which stands for a standard Young 
diagram with n boxes, denotes an irrep of H.(q), and at the same time the 
Yamanoucchi basis [ A ] m  operates on the indices ( 1 , .  . . , n), where M can be 
understood either as the Yamanouchi symbols or the indices of the basis vectors in the 
so-called decreasing page order of the Yamanouchi symbols [13]. Let g,(Y!!l) be the 
standard Young tableau obtained by interchanging the numbers i and i+ 1 in the 
standard tableau YF; if g,{Y!I) is not a standard tableau, one sets the corresponding 
vector equal to 0. Then the irreducible representation of H,(q) in the standard basis 
(i.e. the basis adapted to the chain HJq)=Hn-,(q)I . . . 3H2(q)) is given by 

where for a given x 

and d is the usual axial distance from i to i+ 1 in the Young tableau Y!'. A similar 
result was first obtained by Wenzl [2,3]. This representation is unitary when q* = q-l 
or q =  1. In the following we always assume that q is generic, i.e. it is not a root of 
unity. 
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2.3. Hecke algebras in the non-standard basis 
An irrep of H.(q) is reducible with respect to its subalgebra H,,(q) X H,(q) with 
nl + n2 = n. The process of the reduction is the same as S, and is denoted by 

PI 1 (H.,(q) x H"*(d) = 2 { A n , A J l ( P l l ,  [A*]) .  (2.5) 
1 

The orthogonal subduced basis is H,(q) 3H,,(q) X H.,(q), which is known as the 
non-standard basis of H.(q) (i.e. the basis adapted to the chain 
Hn(q)2HH.,(q) xH.,(q) [U], and is denoted by 

where r= 1,2,  . . . , [AIA&} is the multiplicity label, and the set of quantum numbers 
(r[A,]ml[A2]m2) now serves as its component indices. 

Similar to the S. case, we can define a set of the commutants Hi by 

H,= H,-, + H: 

HI= 
i- I 

g,-,gr-2. . . g k  . . . gi-gigi..I 
k = l  

(2.7a) 

(2.76) 

H:+i=g ,+gPk .  ( 2 . 7 ~ )  
Similar to the symmetric group case, H ,  is the CSCO-I (the first type of the complete set 
of commuting operators) of H,(q), while (H.,. H J  the csco-II (the second type of the 
complete set of commuting operators) of H,, (q) (see [12]), where 

( H ~ , , H , ~ ) = ( H ~ , , H ~ , - i , ,  . . ,H2). (2.8) 
We can expand the non-standard basis of H d q )  in terms of the standard basis of 

H.(q): 

The expansion coefficient is called the [A] I [ A l ]  X [A,] SDC, or the transformation 
coefficient between the standard and non-standard bases of H.(q). Because the 
standard and non-standard basis vectors are orthogonal, the SDCS satisfy the unitarity 
conditions 

(2.11) 



4302 Feng Pan and Jin-Quan Chen 

Once the SDCS are known, the matrix elements of any element geH,(q) in the 
non-standard basis can be derived by using the following equation: 

3. Evaluation of the sncs 

The eigenfunction method (EFM) proved to be a powerful tool in the evaluation of the 
CGCS, SDCS and IDCS (induced coefficients) for symmetric groups [12]. These coef- 
ficients result from a diagonalization of the CSCO-II of the symmetric group in 
appropriate spaces. The advantage of this method is that it can easily be programmed 
and the calculation accomplished using a computer. However, this method can only 
be used to calculate these coefficients numerically. In the Hecke algebra case, the 
representations are q-dependent. One wishes to obtain these coefficients with a 
general q. Thus the diagonalization process becomes rather cumbersome in practice. 
In the following, we outline a new procedure for evaluating the SDCS of the Hecke 
algebras. 

First, we assume that {g,,g,, . . . ,g.-J is a set of generators of H,(q), and 
{g,,g2.. . . ,gn1-J, {g,,+I,. . . ,gn-J are the generatorsofH.,(q), and H,,(q), respec- 
tively. 

(2.9), and then multiplying the results from the left with 
By applying g; with i= 1,2, .  . . , n l - l  and gi with j = n , +  1, n l + 2 , .  . . ,n -1  to 

4 (:I 
we get two sets of linear equations: 

(3.la) 

(3.lb) 
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where dl,(da) is the axial distance from i to i+ 1 ( j  to j +  1) in the Young tableau 
fli;l(vA$), and d,(dj) is the axial distance from i to i+ 1 ( j  to j +  1) in the Young 
tableau Y!!l. The Young tableaux YL!, YE[, and fl!il are defined by 

v;! =&YE' Yl$g.Y14 i m  

v;il= gjY;;r y$zl =gjy$l, 

We assume that the dimensions of [A], [A,], and [A,] are N, N I ,  and N2 respectively, 
which can be calculated by using Robinson's formula [12]. In the following we discuss 
the multiplicity-free and non-multiplicity-free cases separately. In the multiplicity-free 
case, there are NN,N,sDcs. Equations (3.1) give NJV,(N- 1) of linearly independent 
equations, which give linear dependent relations among the SDCS. Then, using the 
unitarity relation from (2.11), 

we can obtain all the SDCS for the given i m p s  [A], [A,], and [A,] because there are 
exactly N,N2 unitarity conditions for the SDCS. Thus, (3.1) and (3.2) are sufficient for 
solving the SDCS when the subduction is multiplicity-free. An example will now be 
given to show how this method works. 

Example. Find the s~c([31]m([31], [11[3]),, where [111=[1], [A21=[3], and [A]=[311. 
First, we rewrite (2.10) as follows: 

I [311, 1,234), = all:?.? + azl:"), + a3lP), (3.3) 

a, = ([2]/[4])%, a,= (1/[3])"~a3. (3.4) 

a;+ a:+a:=al(l+ [2]/[4] + [3])= 1. (3.5) 

a, = 1/[3] az=(I41/[21 [3I2)ln a3=([4]/[2][3])"2. (3.6) 

where ax ,  a,, and a3 are the corresponding SDCS. Applying g, and g3 to (3.3) gives 

Using the unitarity condition (3.2), we have 

From (3.4) we obtain 

In the multiplicity case, similarly to the multiplicity-free case, (3.1) and (3.2) give 
NN,N2 linearly independent relations for the fixed multiplicity label. These relations 
a v  sufficient to solve the SDCS with the fixed multiplicity label. However. the same 
rei. tions hold for any other multiplicity labels. In order to resolve this multiplicity 
ambiguity, we can use these relations to derive the SDCS for a fixed multiplicity label. 
Then, the SDCS with different multiplicity labels are chosen to be orthogonal to each 
other. In this case the solution to the SDCS is not unique and depends on the phase 
convention and the symmetry properties of SDCS. In this paper, the phase convention 
for the Hecke algebra SDCS is chosen to be the same as that for the symmetric groups 
given in (121 (see (4.4) in the next section). 
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Now we give an example to show how to derive the Hecke algebra SDCS with 
multiplicity. The first non-trivial case occurs in [321] [21] X [21], which has a 
multiplicity equal to two. Using (3.1) and (3.2), one can easily obtain the SDCS of the 
first row and the last row in table 7 (see section 4). According to (2.9),  the basis of 
[321] [Zl], x [21L can be written as 

[2: 
a a . . . a ,  

a4, . . a& 

(3.7) 
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12 13 
34 24 

23 1 [3] - 
l . 4  [2]’ z 

24 __ 
l . 3  (21‘ (21’ 

1 

where the SDCS are arranged in the same order as those given in table 7. After 
applying g,, and g ,  to (3.7). we have 

(3.9a) 

Table4 [A]=[41] 

1234 1235 1245 1345 
5 4 3 2 

1 [51 - [51 [5j 
121~41 

1,2345 - 

I .  

141’ 131[41‘ 141! 
234 [3][5] 1 1 1 - -- _- -- 
5 [4]’ [3]’[4]* [4]![3] [4]! 

.. 

[21 151121 pJ 
131141 [41[31’ [3i2 

12,345 - 
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Table5 [A]=[32] 

123 I 24 134 125 135 

45 35 25 34 24 

a: +a;[4]/[2][5]"2= -a;[5]"2 

a;= -a;[4]/[2]-a;. 

Then, using the unitarity conditions, 

a$$ + a:[4] [2]/[5] + a:[2I2 = 1 

(3.96) 

a:[2]2/[5] t a:[4] [2] +u$2]2= 1 (3.10) 

and the same relations for a$, we can establish four independent relations which are 
sufficient to solve the ais. Then the SDCS of the thud and fourth rows in (3.8) are 
chosen to be orthogonal to the first and second rows in (3.8). It can be seen that, by 
the substitutions 

(3.11) 

the new variables also satisfy (3 .9~)  and (3.10). This is nothing but the symmetry 
condition 

where At's are the phases of the corresponding Yamanouchi basis, and [&?2 denotes 
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a Young tableau conjugate to [4m. The following symmetry is also used in deriving 
(3.12): 

where &([A,][Az][A]) are phases and have been given in [12]. Equation (3.13) is 
derived by applying g, to (3.7). 

Now we only need four independent relations among the ars. Let 

y = a,la,. (3.14) 

Table 6. [A] = [311] 
~ 

123 1 24 134 125 135 145 
4 3 2 3 2 2 
5 5 5 4 4 3 

245 

23 

1,3 
4 

1 
2’ 345 
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Table 7. 12.1 = 13211 

Feng Pun and Jin-Quun Chen 

124 125 124 125 126 1 26 

6 6 5 4 5 4 
/ c = l l  35 34 36 36 34 35 

134 135 134 135 136 136 

6 6 5 4 5 4 
/c=2 t 25 24 26 26 24 25 

Using (3.9a) and the orthogonality relation for the SDCS of the first and third rows in 
(3.81, 

ala4= -a2u3[3]/[5]”2 

we get the quadratic equation for y ,  

y2[5] + 2[3b + 1 = 0 

with the solution 

Y = -([31* [21)/[51. 
We find the only solution for y is 

y =  -([3] + [2])/[5] = - [5]‘/[S] 

where, for a given x ,  
= ( 4 ” 2  - q - x 1 2 ) / ( q 1 / 2  - p), 

a3= -a2[5]’/[5] a,  = a2[3]‘/[5]’/2 ~4=a2131[~1’~[31’[~. 

Hence, from (3.9), (3.14) and (3.15), we obtain 

Finally, using (3.10), we get 

= ([31‘2[sp[~1‘[4j [213)1/2 a2 = ([s12/2[~1‘[41 [ 2 1 3 y  

a,= -([S]’/2[4][2]’)’” a4= -([312[5]’/2[4] [~]’[3]“)l”. 

The final results of the SDCS are given in table 7. 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 



Irreducible representation8 of Hecke algebras 4309 

4. sncs 

In this section, we will present some SDCS of H.(p) derived by using the linear 
equation method outlined in the above section. In the following, we will discuss a 
number of special cases first. 

(a) [a,] = 1: 

where (m)l is the Young tableau resulting from deleting the box with the number n in 
"Ill I in'. 

(b) [A,] = [2] or 1111: (i) suppose that i and i + 1 are either in the same row or in the 
same column of the Young tableau Y!!], then 

([~lml[.lllml[~~D, = 6m,,,, (4.2) 
where (m)]  is the Young tableau resulting from deleting boxes with the numbers n and 
n + 1 in YE1, (ii) when n and n + 1 are neither in the same row nor in the same column, 
we can obtain a relation between the two SDCS from (3.1). The results are given in 
table 1. 

(c) When both [A,], [A,], and [A ]  are symmetric or antisymmetric, there is only one 
term in the expansion. The SDCS for such cases are trivial: 

(Inll[nl; [nt 1 [ n d q  = 1 (4%) 
([1"]1[1"]; [l"t][l"z]),= 1. (4.36) 

Other non-trivial SDCS can be derived by using the linear equation method outlined 
in section 3. The phase convention for the SDCS is the same as that chosen for 
symmetric groups [12]: 

where m=min means taking the index m as small as possible (the maximum 
Yamanouchi symbol r,,rnMI. . . rzrl corresponds to the smallest index m =  1). 

In tables 1-7 we list the SDCS of H.(q) for nG-5 and one multiplicity case for n = 6 .  
In the tables, (a )  it is assumed that the index m is smaller than the index m', while 
d >  0, and (6) the entries are the squares of the SDCS; a minus sign indicates a negative 
SDC. 

5. Discussion 

In this paper, the non-standard basis for Hecke algebras of An-l type has been 
discussed, and the SDCS of the Hecke algebras H.(q) for n S.5 and one multiplicity case 
for n = 6  have been derived by using the linear equation method. This method 
provides us with a useful tool for deriving analytical expressions of some SDCS and IDCS 
of Hecke algebras. Using the Schur-Weyl duality relation between Hecke algebras 
and the quantum group U,(N) [ 111, we know that the SDCS of Hecke algebras are very 
useful in two aspects. First, the Hecke algebra SDCS are also special SDCS for the 
quantum group chain U4(m+ n) ~U,(m)$U,(n). The general quantum group SDCS 
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can be derived from them. Secondly, the Racah coefficients of the quantum group 
U,(N) can also be expressed in terms of them [12]: 

Feng Pan and Jin-Quan Chen. 

where the summation is carried out under k e d  ml, m2 and m3. The Schur-Weyl 
duality between the Hecke algebras and quantum group U,(N) also enables us to 
obtain CGCS of SU,(N) from IDCS of Hecke algebras. Work in this direction is in 
progress. 
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